• 祁学斌(Xuebin Qi

    昆明理工大学灵长类转化医学研究院,
    省部共建非人灵长类生物医学国家重点实验室
    研究员,博导,遗传分析与测序平台负责人
    Professor,Principal Investigator for Genetic Analysis and Sequencing Platform
    State Key Laboratory of Primate Biomedical Research (LPBR)
    School of Primate Translational Medicine
    Kunming University of Science and Technology (KUST)

    一、教育及工作经历 Education

    • 1993年9月 - 1997年7月,甘肃农业大学,动物科学系,畜牧专业,农学学士
    • 1997年9月 - 2000年7月,甘肃农业大学,动物科学系,动物遗传育种与繁殖专业,农学硕士
    • 2000年9月 - 2004年6月,兰州大学,生命科学学院,生态学专业,理学博士
    • 2001年1月-2004年6月,兰州大学-国际家畜研究所,遗传学,联合培养博士 
    1. Sept. 1997- June 2000, Gansu Agricultural University, Major in Animal Genetics, Breeding and Reproduction, MSc of Agriculture.
    2. Sept. 2000- June 2004, Lanzhou University, Major in Ecology, PhD.(Feb. 2001-June 2004, International Livestock Research Institute, ILRI-Nairobi, Kenya, PhD Graduate fellow)
    3. Sept. 1993- June 1997, Gansu Agricultural University, Major in Animal Science, Bachelor of Agriculture. 
    4. Jan.2001-June 2004, Lanzhou Univ.-International Livestock ResearchInstitute (ILRI) Joint PhD, CGIAR, Nairobi, Kenya

    二、工作经历 Work Experience

    • 202211至今,昆明理工大学,灵长类转化医学研究院,省部共建非人灵长类生物医学国家重点实验室,研究员,博士生导师
    • 202201 – 202211月,昆明理工大学,灵长类转化医学研究院,省部共建非人灵长类生物医学国家重点实验室,副研究员,硕士生导师
    • 201401 – 202201月,中国科学院昆明动物研究所,遗传资源与进化国家重点实验室,副研究员,硕士生导师
    • 200701 – 201312月,中国科学院昆明动物研究所,遗传资源与进化国家重点实验室,助理研究员
    • 200410 - 200612月,中国科学院昆明动物研究所,细胞与分子进化重点实验室,博士后
    • 200406 - 200409月,国际家畜研究所,肯尼亚,内洛比,访问学者

    1. Nov. 2022-Present, Professor, StateKey Laboratory of Non-Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology.

    2. Jan. 2022-Nov. 2022, AssociateProfessor, State Key Laboratory of Non-Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology.

    3. Jan. 2014-Jan. 2022, AssociateProfessor, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences.

    4. Jan. 2007-Dec. 2013, AssistantProfessor, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences.

    5. Oct. 2004-Dec. 2006, PostdoctoralFellow, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences.

    6. June 2004-Sept. 2004, VisitingScientist, International Livestock Research Institute, Nairobi, Kenya.

    三、主要研究方向 Main Research Directions

    1.     遗传分析与测序平台

    Genetic Analysisand Sequencing Platform

    2.     灵长类表型组与疾病的遗传机制

    GeneticMechanism underlying Primate Phenome and Disease

    3.     人和动物对高原低氧环境的习服与适应机制

    Molecular Mechanismunderlying Acclimatization and Adaptation to High Altitude Hypoxia

    四、科研领域描述 Description of Scientific Research

    1、遗传分析与测序平台

    建立包括单细胞测序在内的各种多组学测序文库构建技术、多组学数据质控与分析流程、多组学功能元件发掘等组学分析方法,为灵长类转化医学研究院提供高质量的组学建库与测序技术支撑。

    Establishing GeneticAnalyses and Sequencing Platform support for School of Primate Translational Medicine, including multi-omics library construction, quality control and analytical pipeline for sequencing data, data mining for functional genomic elements in primates etc..

    2、灵长类表型组与疾病的遗传机制

    利用多组学手段解析灵长类表型组与疾病的调控机制

    Decipheringgenetic mechanism underlying the phenome and disease in primates by using multi-omics technologies.

    3、人和动物对高原低氧环境的习服与适应机制

    利用多组学技术解析人和动物对高原低氧环境的习服与适应机制

    Deciphering genomicmechanism underlying the acclimatization and adaptation to high altitude hypoxia in human and animals.

    五、承担科研项目情况 Research Projects

    1. 解析高原衰退症的流行病学分布模式及其关键影响因素与调控机制,国家自然科学区域创新发展联合基金重点支持项目,U22A20340,2023.01-2026.12,89.25/255万元,在研,参与。

    Deciphering the epidemiological patterns of high altitude deterioration and its impact factors and regulative mechanism, National Science Foundation of China (NSFC), Regional I&R Joint Key Project, U22A20340,2023.01-2026.12,892500/2550000 RMB Yuan. Ongoing, Joint Principal Investigator.

    2. 高原低氧环境下影响藏族人群遗传适合度的关键生理因素及其调控机制的多组学解析,国家自然科学项目面上项目,32070578,2021.01-2024.12,60万元,在研,主持。

    Multi-omics characterization of key physiological factors that affecting genetic fitness at high altitude hypoxic environment and its regulating mechanism in Tibetan populations, National Science Foundation of China (NSFC), General Project, 32070578, 2021.01-2024.12, 600,000 RMB Yuan. Ongoing, Principal Investigator.

    3. 平原人群对高原低氧环境的生理响应模式及影响习服的关键遗传与生理因素及其预警标志物筛选,西藏自治区重点研发项目,XZ202201ZY0035G,2022.05-2025.04,85万元,在研,联合主持。

    Key genetic and physiological factors affecting acclimatization of lowland populations living in high altitude enviroments, R&D program of Tibetan Autonomous Region, Key Project, XZ202201ZY0035G,2022.05-2025.04, 850,000 RMB Yuan. Ongoing, Joint Principal Investigator.

    4. 高原人群适应高寒环境的遗传资源发掘,中国科学院战略性科技先导项目A类,XDA20040102,2018.01-2022.09,138/670万元,在研,课题第二负责人。

    Characterization of genetic and phenotypic traits underlying adaptation to high altitude and cold environment in Tibetan populations. the Strategic Priority Research Program of the Chinese Academy of Sciences, XDA20040102, 2018.01-2022.09, 1,380,000/6,700,000 RMB Yuan. Ongoing, Joint Principal Investigator.

    5. 藏族人群高原低氧适应关键基因EPAS1和EGLN1互作的分子机制及功能验证研究,国家自然科学项目重大研究计划项目,91631306,2017.1-2019.12,289万元,结题,参与。

    Functional validation and molecular mechanism underlying interactions of EPAS1 and EGLN1, two key genes regulating high altitude hypoxic adaptation in Tibetan populations. NSFC Key Project, 91631306, 2017.01-2019.12, 2,890,000 RMB yuan. completed, Key Participant.

    6. 解析藏族人群高原肺动脉高压的调控机制及其对高原低氧环境适应的遗传效应,国家自然科学项目面上项目,31671329,2017.1-2018.12,25万元,结题,主持。

    Deciphering the regulating mechanism of high altitude pulmonary arterial hypertension and their genetic effect on adaptation to high altitude hypoxic environment. National Science Foundation of China (NSFC), General Project, 31671329, 2017.01-2018.12, 250,000 RMB Yuan. completed, Principal Investigator.

    7. 青藏高原史前人类定居与迁徙模式的遗传学研究,国家自然科学项目面上项目, 31371269,2014.1-2017.12, 80万元,结题,主持。

    Genetic studies on prehistoric human colonization and migrations on the Qinghai-Tibetan Plateau. National Science Foundation of China (NSFC), General Project, 31371269, 2014.01-2017.12, 800,000 RMB Yuan. completed, Principal Investigator.

    8. 慢性高原低氧损伤与长期适应的分子机制研究,国家重点基础研究计划(973)课题,2012CB518202,2012.1-2016.8,532万元,结题,子课题负责人。

    Molecular mechanism underlying physiological acclimatization and adaptation to high altitude hypoxic environment. National Key Basic Research Program (973 project), 2012CB518202, 2012.01-2016.08, 5,320,000 RMB Yuan. completed, Joint Principal Investigator.

    9. 家养牦牛的起源、驯化与群体扩散的遗传学研究,国家自然科学基金面上项目, 30870295,2009.1-2011.12,33万元,结题,主持。

    Deciphering the epidemiological patterns of high altitude deterioration and its impact factors and regulative mechanism, National Science Foundation of China (NSFC),Regional I&R Joint Key Project, U22A20340,2023.01-2026.12,892500/2550000 RMB Yuan. Ongoing, Joint Principal Investigator.

    六、获奖情况

    1.      2022年:西藏自治区科学技术奖一等奖,藏族人群对高原低氧环境的生理适应特征及其调控机制,(第三完成人)。

    2.      2015年:西藏自治区科学技术奖二等奖,青藏高原史前人类定居历史及其对高原低氧环境的遗传适应机制,编号2015-JG-2-07-05,(第五完成人)。

    3.      2013:云南省自然科学奖一等奖,灵长类大脑进化与人类智力起源的遗传机制,编号2013MA166-R-003(第三完成人)。

    七、代表性论文 Representative papers

    1. Zheng, W.#, He, Y.#, Guo, Y.#, Yue, T.#, Zhang, H.#, Li, J.#, Zhou, B., Zeng, X., Li, L., Wang, B., Cao, J., Chen, L., Li, C., Li, H., Cui, C., Bai, C., Baimakangzhuo, Qi, X.*, Ouzhuluobu* & Su, B.* Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biol 24, 73 (2023).
    2. He, Y.#, Guo, Y.#, Zheng, W.#, Yue, T.#, Zhang, H.#, Wang, B., Feng, Z., Ouzhuluobu, Cui, C., Liu, K., Zhou, B., Zeng, X., Li, L., Wang, T., Wang, Y., Zhang, C., Xu, S., Qi, X.* & Su, B.* Polygenic adaptation leads to a higher reproductive fitness of native Tibetans at high altitude. Curr Biol 33, 4037-4051.e5 (2023).
    3. He, Y.#, Zheng, W.#, Guo, Y.#, Yue, T.#, Cui, C.#, Ouzhuluobu, Zhang, H., Liu, K., Yang, Z., Wu, T., Qu, J., Jin, Z.B., Yang, J., Lu, F., Qi, X.* & Su, B.* Deep phenotyping of 11,880 highlanders reveals novel adaptive traits in native Tibetans. iScience 26, 107677 (2023).
    4. Yue, T.#, Guo, Y.#, Qi, X.#, Zheng, W.#, Zhang, H.#, Wang, B., Liu, K., Zhou, B., Zeng, X., Ouzhuluobu, He, Y. & Su, B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 10.7554/eLife.89004.2 (2023).
    5. Peng, M.S., Liu, Y.H., Shen, Q.K., Zhang, X.H., Dong, J., Li, J.X., Zhao, H., Zhang, H., Zhang, X., He, Y., Shi, H., Cui, C., Ouzhuluobu, Wu, T.Y., Liu, S.M., Gonggalanzi, Baimakangzhuo, Bai, C., Duojizhuoma, Liu, T., Dai, S.S., Murphy, R.W., Qi, X.B.*, Dong, G.*, Su, B.* & Zhang, Y.P.* Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 21, 208 (2023).
    6. Yang, Z.#, Bai, C.#, Pu, Y.#, Kong, Q.#, Guo, Y.#,Ouzhuluobu, Gengdeng, Liu, X., Zhao, Q., Qiu, Z., Zheng, W., He, Y., Lin, Y.,Deng, L., Zhang, C., Xu, S., Peng, Y., Xiang, K., Zhang, X., Baimayangji, Cirenyangji, Cui, C., Baimakangzhuo, Gonggalanzi, Bianba, Pan, Y., Xin, J., Wang, Y., Liu, S., Wang, L., Guo, H., Feng, Z., Wang, S., Shi, H., Jiang, B., Wu, T., Qi, X.* & Su, B.* Genetic adaptation of skin pigmentation inhighland Tibetans. Proc Natl Acad Sci U S A 119, e2200421119(2022).
    7. He, Y.#, Li, J.#, Yue, T.#, Zheng, W.#, Guo, Y.#,Zhang, H., Chen, L., Li, C., Li, H., Cui, C., Ouzhuluobu*, Qi, X.* & Su, B.* Seasonality and Sex-Biased Fluctuation ofBirth Weight in Tibetan Populations. Phenomics DOI:10.1007/s43657-021-00038-7 (2022).
    8. Ge, Q., Guo,Y., Zheng, W., Zhao, S.*, Cai, Y.* & Qi,X.* Molecular mechanisms detected in yak lung tissue via transcriptome-wideanalysis provide insights into adaptation to high altitudes. ScientificReports 11, 7786 (2021). JCR Q1区,5yrIF=4.576。
    9. Ouzhuluobu#, He, Y.#, Lou, H.#, Cui, C.#, Deng,L#., Gao, Y., Zheng, W., Guo, Y., Wang, X., Ning, Z., Li, J., Li, B., Bai, C., Baimakangzhuo, Gonggalanzi, Dejiquzong, Bianba, Duojizhuoma, Liu, S., Wu, T.,
      Xu, S.*, Qi, X.* & Su, B.* Denovo assembly of a Tibetan genome and identification of novel structural variants associated with high altitude adaptation. National ScienceReview, 7:391–402 (2020).IF=13.833 通讯作者JCR Q1区
    10. Qi, X.#, Zhang, Q.#, He, Y.#, Yang, L.#, Zhang, X., Shi, P., Yang, L., Liu, Z.,Zhang, F., Liu, F., Liu, S., Wu, T., Cui, C., Ouzhuluobu, Bai, C., Baimakangzhuo, Han, J., Zhao, S., Liang, C. & Su, B.* The Transcriptomic Landscape of Yaks Reveals Molecular Pathways for High Altitude Adaptation. GenomeBiol Evol 11, 72-85 (2019). JCRQ2区、5yrIF=4.019。
    11. He, Y.#, Qi,X.#, Ouzhuluobu#, Liu, S.#, Li, J.#, Zhang, H., Bianba, Bai, C., Zheng, W.,Guo, Y., Dejiquzong, Baimakangzhuo, Duojizhuoma, Baimayangji, Gonggalanzi, Pan, Y., Qula, Kangmin, Cirenyangji, Guo, W., Yangla, Peng, Y., Zhang, X., Xiang, K., Yang, Z., Wang, L., Gengdeng, Zhang, Y., Wu, T., Su, B.* & Cui, C.* Blunted Nitric Oxide Regulation in Tibetans under High Altitude Hypoxia. NationalScience Review, 5:516–529 (2018). 5yrIF=13.833,并列第一作者 JCR Q1区
    12. Peng, Y.#, Cui, C.#, He, Y.#,Ouzhuluobu#, Zhang, H.#, Yang, D.#, Zhang, Q.#,Bianbazhuoma, Yang, L., He, Y., Xiang, K., Zhang, X., Bhandari, S., Shi, P., Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan, Y., Cirenyangji, Baimayangji, Gonggalanzi, Bai, C., Bianba, Basang, Ciwangsangbu, Xu, S., Chen, H., Liu, S., Wu, T.*, Qi, X.* &Su, B.* Down-regulation of EPAS1transcription and genetic adaptation of Tibetans to high-altitude hypoxia. MolBiol Evol 34, 818-830 (2017). IF=13.649, 通讯作者. JCR Q1区
    13. Zhang, H.#, He,Y.#, Cui, C.#, Ouzhuluobu, Baimakangzhuo, Duojizhuoma, Dejiquzong, Bianba, Gonggalanzi, Pan, Y., Qula, Kangmin, Cirenyangji, Baimayangji, Bai, C., Guo, W., Yangla, Peng, Y., Zhang, X., Xiang, K., Yang, Z., Liu, S., Tao, X., Gengdeng, Zheng, W., Guo, Y., Wu, T., Qi,X.* & Su, B.* Cross-altitude analysis suggests an elevation turningpoint of 4,500m for polycythemia incidence in Tibetans. American Journal of Hematology92(9): E552-E554 (2017), DOI: 10.1002/ajh.24809. IF=6.137,通讯作者. JCR Q1区
    14. Guo, Y.#, He,Y.#, Cui, C.#, Ouzhuluobu, Baimakangzhuo, Duojizhuoma, Dejiquzong, Bianba, Peng, Y., Bai, C., Gonggalanzi, Pan, Y., Qula, Kangmin, Cirenyangji, Guo, W., Yangla, Zhang, H., Zhang, X., Zheng, W., Xu, S., Chen, H., Zhao, S., Cai, Y., Liu, S., Wu, T., Qi, X.* & Su,B.* GCH1 plays a role in high altitude adaptation of Tibetans. ZoologicalResearch, 38(3): 155-162 (2017). 通讯作者 IF=1.556 JCR Q1区
    15. Zheng, W.#, He, Y.#, Cui, C.#, Ouzhuluobu,Dejiquzong, Peng, Y., Bai, C., Duojizhuoma., Gonggalanzi, Bianba, Baimakangzhuo, Pan, Y., Qula, Kangmin, Cirenyangji, Guo, W., Yangla, Zhang, H., Zhang, X., Guo, Y., Xu, S., Chen, H., Zhao, S., Cai, Y., Liu, S., Wu, T., Qi, X.* & Su, B.* EP300 contributesto high altitude adaptation of Tibetans by regulating nitric oxide production. ZoologicalResearch, 38(3): 163-170 (2017). 通讯作者。IF=1.556 JCR Q1区
    16. Bhandari, S.#, Zhang, X.#,Cui, C.#, Yangla, Liu, L., Ouzhuluobu, Baimakangzhuo, Gonggalanzi,Bai, C., Bianba, Peng, Y., Zhang, H., Xiang, K., Shi, H., Liu, S., Gengdeng,Wu, T., Qi, X.* & Su, B.*Sherpas share genetic variations with Tibetans for high-altitude adaptation. MolecularGenetics & Genomic Medicine 5, 76-84 (2017). 通讯作者. IF=2.695 JCR Q3区
    17. Yang, D.#, Peng, Y.#,Ouzhuluobu#, Bianbazhuoma#, Cui, C.#, Bianba,Wang, L., Xiang, K., He, Y., Zhang, H., Zhang, X., Liu, J., Shi, H., Pan, Y., Duojizhuoma, Dejiquzong, Cirenyangji, Baimakangzhuo, Gonggalanzi, Liu, S., Gengdeng, Wu, T., Chen, H., Qi, X.*& Su, B.* HMOX2 functions as a modifier gene for high-altitude adaptation in Tibetans. Human Mutation 37, 216-23 (2016). IF=5.089, 通讯作者. JCR Q2区
    18. Bhandari, S.#, Zhang, X.#,Cui, C.#, Bianba, Liao, S., Peng, Y., Zhang, H., Xiang, K., Shi, H.,Ouzhuluobu, Baimakongzhuo, Gonggalanzi, Liu, S., Gengdeng, Wu, T., Qi, X.* & Su, B.* Genetic evidenceof a recent Tibetan ancestry to Sherpas in the Himalayan region. ScientificReports 5, 16249 (2015).IF=4.011, 通讯作者. 中科院 JCR Q1区
    19. Qi, X.#, Cui, C.#, Peng, Y.#, Zhang,X.#, Yang, Z.#, Zhong, H., Zhang, H., Xiang, K., Cao, X.,Wang, Y., Ouzhuluobu, Basang, Ciwangsangbu, Bianba, Gonggalanzi, Wu, T., Chen, H., Shi, H. & Su, B. Genetic evidence of Paleolithic colonization and Neolithic expansion of modern humans on the Tibetan Plateau. MolecularBiology and Evolution 30, 1761-78 (2013). JCR Q1区、5yrIF=13.649。
    20. Xiang, K.#, Ouzhuluobu#,Peng, Y.#, Yang, Z., Zhang, X., Cui, C., Zhang, H., Li, M., Zhang,Y., Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu, T., Chen, H., Shi, H., Qi, X.* & Su, B.* Identification ofa Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Molecular Biology and Evolution 30,1889-98 (2013). IF=13.649, 通讯作者. JCR Q1区
    21. Zhang, X.#, Liao, S.#, Qi, X.#, Liu, J., Kampuansai,J., Zhang, H., Yang, Z., Serey, B., Sovannary, T., Bunnath, L., Seang Aun, H., Samnom, H., Kangwanpong, D., Shi, H.* & Su, B.* Y-chromosome diversity suggests southern origin and Paleolithic backwave migration of Austro-Asiatic speakers from eastern Asia to the Indian subcontinent. Scientific Reports 5,15486 (2015). 5rIF=5.228,#并列第一作者. JCR Q3区
    22. Zhang, X.#, Kampuansai, J.#, Qi, X.#, Yan, S., Yang, Z.,Serey, B., Sovannary, T., Bunnath, L., Aun, H.S., Samnom, H., Kutanan, W., Luo, X., Liao, S., Kangwanpong, D., Jin, L., Shi, H.* & Su, B.* An updated phylogeny of the human Y-chromosome lineage O2a-M95 with novel SNPs. PLoSOne 9, e101020 (2014). IF=3.057,#并列第一作者. JCR Q3区
    23. Zhang, X.#, Qi, X.#, Yang, Z.#, Serey, B., Sovannary, T.,Bunnath, L., Seang Aun, H., Samnom, H., Zhang, H., Lin, Q., van Oven, M., Shi, H. & Su, B. Analysis of mitochondrial genome diversity identifies new and ancient maternal lineages in Cambodian aborigines. Nat Communications 4,2599 (2013). IF=11.329, #并列第一作者. 中科院JCR Q1区
    24. Shi H#, Qi X#, Zhong H#, Peng Y, Zhang X, Ma RZ*, SuB*. Genetic evidence of an East Asian origin and Paleolithic northward migration of Y-chromosome haplogroup N. PLoS One 8: e66102 (2013). IF=3.057, #并列第一作者. 中科院JCR Q3区
    25. Qi XB, Jianlin H, Wang G, Rege JE, Hanotte O. Assessmentof cattle genetic introgression into domestic yak populations using mitochondrial and microsatellite DNA markers. Animal Genetics 41:242-252 (2010) IF=1.779 JCR Q1/Q2区
    26. Qi, X.-B.#, Yang, S.#, Zheng, H.-K.#, Wang, Y.-Q.#, Liao,C.-H., Liu, Y., Chen, X.-H., Shi, H., Yu, X.-J., Lin, A.A., Cavalli-Sforza, L.L., Wang, J.* & Su, B.* Detecting positive Darwinian selection in brain-expressed genes during human evolution. Science Bulletin(Chinese Science Bulletin) 52, 324-335 (2007). IF=6.277,JCR Q1区
    27. Xuebin, Q., Jianlin, H., Lkhagva, B., Chekarova, I.,Badamdorj, D., Rege, J.E. & Hanotte, O. Genetic diversity and differentiation of Mongolian and Russian yak populations. Journal of Animal Breeding andGenetics 122, 117-26 (2005). JCRQ2区
    28. Xin, J.#, Zhang, H.#, He, Y.#, Duren, Z.#, Bai,C.#, Chen, L., Luo, X., Yan, D., Zhang, C., Zhu, X., Yuan, Q., Cui, C., Qi, X., Ouzhuluobu, Wong, W.H.*, Wang,Y.* & Su, B.* Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nature Communications, 11, 4928 (2020).
    29. He, Y.#, Luo, X.#, Zhou, B.#, Hu, T.#, Meng, X.#,Audano, P.A., Kronenberg, Z.N., Eichler, E.E., Jin, J., Guo, Y., Yang, Y., Qi, X. & Su, B.* Long-read assemblyof the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nature Communications 10, 4233 (2019).
    30. Yang, Z.#, Shi, H.#, Ma, P.#, Zhao, S., Kong, Q.,Bian, T., Gong, C., Zhao, Q., Liu, Y., Qi,X., Zhang, X., Han, Y., Liu, J., Li, Q., Chen, H.* & Su, B.* Darwinianpositive selection on the pleiotropic effects of KITLG explain skin pigmentation and winter temperature adaptation in Eurasians. MolecularBiology and Evolution 35, 2272-2283 (2018).
    31. Yang, Z.#, Zhong, H.#, Chen, J.#, Zhang, X.#,Zhang, H., Luo, X., Xu, S., Chen, H., Lu, D., Han, Y., Li, J., Fu, L., Qi, X., Peng, Y., Xiang, K., Lin, Q.,Guo, Y., Li, M., Cao, X., Zhang, Y., Liao, S., Peng, Y., Zhang, L., Guo, X., Dong, S., Liang, F., Wang, J., Willden, A., Seang Aun, H., Serey, B., Sovannary, T., Bunnath, L., Samnom, H., Mardon, G., Li, Q., Meng, A., Shi, H.* & Su, B.* A Genetic Mechanism for Convergent Skin Lightening during Recent Human Evolution. Molecular Biology and Evolution 33, 1177-87 (2016).
    32. Wu, T.-Y., Liu, F.-Y., Wei, C.-Y., Wang, Z.-G.,Ouzhuluobu, Cui, C.-Y., Bianba, Qi,X.-B. & Su, B. Hematological parameters in high altitude residents:Tibetan natives versus Han migrants. Chinese Journal of Applied Physiology30, 516-525 (2014).
    33. Li, M.#, Zhang, H.#, Luo, X.J.#, Gao, L., Qi, X.B., Gourraud, P.A. & Su, B.*Meta-analysis indicates that the European GWAS-identified risk SNP rs1344706 within ZNF804A is not associated with schizophrenia in Han Chinese population. PLoSOne 8, e65780 (2013).
    34. Shi, L., Li, M., Lin, Q., Qi, X. & Su, B.* Functional divergence of the brain-sizeregulating gene MCPH1 during primate evolution and the origin of humans. BMCBiology 11, 62 (2013).
    35. Sun, Z., Zhang, Y., Zhang, R., Qi, X. & Su, B.* Functional divergence of the rapidly evolvingmiR-513 subfamily in primates. BMC Evolutionary Biology 13, 255(2013).
    36. Wu, T.-Y., Liu, F.-Y., Ouzhuluobu, Cui, C.-Y., Qi, X.-B. & Su, B. A geneticadaptive pattern-low hemoglobin concentration in the himalayan highlanders. ChineseJournal of Applied Physiology 29, 481-493 (2013).
    37. Li, M.#, Mo, Y.#, Luo, X.-j.#, Xiao, X., Shi, L.,Peng, Y.-m., Qi, X.-b., Liu, X.-y.,Yin, L.-d., Diao, H.-b. & Su, B.* Genetic association and identification of a functional SNP at GSK3β for schizophrenia susceptibility. SchizophreniaResearch 133, 165-171 (2011).
    38. Zhong, H.#, Li, X.L.#, Li, M., Hao, L.X., Chen,R.W., Xiang, K., Qi, X.B., Ma, R.Z.& Su, B.* Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res Ther 13,R186 (2011).
    39. Zhong, H.#, Shi, H.#, Qi, X.B., Duan, Z.Y., Tan, P.P., Jin, L., Su, B.* & Ma, R.Z.*Extended Y-chromosome investigation suggests post-Glacial migrations of modern humans into East Asia via the northern route. Molecular Biology and Evolution 28,717-727 (2011).
    40. Peng, Y.#, Yang, Z.#, Zhang, H.#, Cui, C.#, Qi, X., Luo, X., Tao, X., Wu, T.,Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen, H., Shi, H.* & Su, B.* Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Molecular Biology and Evolution 28, 1075-1081 (2011).
    41. Zhong, H.#, Shi, H.#, Qi, X.B., Xiao, C.J., Jin, L., Ma, R.Z.* & Su, B.* Globaldistribution of Y-chromosome haplogroup C reveals the prehistoric migration routes of African exodus and early settlement in East Asia. Journalof Human Genetics 55, 428-35 (2010).
    42. Peng, Y., Shi, H., Qi, X.B., Xiao, C.J., Zhong, H., Ma, R.L. & Su, B.* The ADH1BArg47His polymorphism in east Asian populations and expansion of rice domestication in history. BMC Evolutionary Biology 10, 15(2010).
    43. Shi, H.#, Tan, S.J.#, Zhong, H.#, Hu, W., Levine,A., Xiao, C.J., Peng, Y., Qi, X.B.,Shou, W.H., Ma, R.L., Li, Y., Su, B.* & Lu, X.* Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia. American Journal of Human Genetics 84, 534-41 (2009).
    44. Shi, H.#, Zhong, H.#, Peng, Y.#, Dong, Y.L., Qi, X.B., Zhang, F., Liu, L.F., Tan,S.J., Ma, R.L., Xiao, C.J., Wells, S., Jin, L. & Su, B.* Y chromosome evidence of earliest modern human settlement in East Asia and multiple origins of Tibetan and Japanese populations. BMC Biology 6, 45 (2008).